Convergence Analysis for Distributionally Robust Optimization and Equilibrium Problems
نویسندگان
چکیده
Authors are encouraged to submit new papers to INFORMS journals by means of a style file template, which includes the journal title. However, use of a template does not certify that the paper has been accepted for publication in the named journal. INFORMS journal templates are for the exclusive purpose of submitting to an INFORMS journal and should not be used to distribute the papers in print or online or to submit the papers to another publication.
منابع مشابه
Convergence Analysis for Mathematical Programs with Distributionally Robust Chance Constraint
Convergence analysis for optimization problems with chance constraints concerns impact of variation of probability measure in the chance constraints on the optimal value and the optimal solutions and research on this topic has been well documented in the literature of stochastic programming. In this paper, we extend such analysis to optimization problems with distributionally robust chance cons...
متن کاملApproximate Dynamic Programming By Minimizing Distributionally Robust Bounds
Approximate dynamic programming is a popular method for solving large Markov decision processes. This paper describes a new class of approximate dynamic programming (ADP) methods— distributionally robust ADP—that address the curse of dimensionality by minimizing a pessimistic bound on the policy loss. This approach turns ADP into an optimization problem, for which we derive new mathematical pro...
متن کاملA Cutting Surface Algorithm for Semi-Infinite Convex Programming with an Application to Moment Robust Optimization
We first present and analyze a central cutting surface algorithm for general semi-infinite convex optimization problems, and use it to develop an algorithm for distributionally robust optimization problems in which the uncertainty set consists of probability distributions with given bounds on their moments. The cutting surface algorithm is also applicable to problems with non-differentiable sem...
متن کاملDistributionally Robust Optimization with Matrix Moment Constraints: Lagrange Duality and Cutting Plane Methods1
A key step in solving minimax distributionally robust optimization (DRO) problems is to reformulate the inner maximization w.r.t. probability measure as a semiinfinite programming problem through Lagrange dual. Slater type conditions have been widely used for zero dual gap when the ambiguity set is defined through moments. In this paper, we investigate effective ways for verifying the Slater ty...
متن کاملA Practically Efficient Approach for Solving Adaptive Distributionally Robust Linear Optimization Problems
We develop a modular and tractable framework for solving an adaptive distributionally robust linear optimization problem, where we minimize the worst-case expected cost over an ambiguity set of probability distributions. The adaptive distrbutaionally robust optimization framework caters for dynamic decision making, where decisions can adapt to the uncertain outcomes as they unfold in stages. Fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Oper. Res.
دوره 41 شماره
صفحات -
تاریخ انتشار 2016